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Chapter 4

Simulation of forest hydrology: model description

4.1 Introduction

The water balance of a forest system consists of the water fluxes as precipitation,

evapotranspiration from soil and vegetation, interception of precipitation, and change in

soil water content by drainage. The one-dimensional, time dependent forest water balance

model, used in this study, is divided into three sub-models. Each sub-model describes one

of the above named water fluxes, except for precipitation, which is an input variable. The

daily water balance is simulated from hourly measured meteorological data.

Transpiration is calculated with the Penman-Monteith (PM) equation (Monteith,

1965, Rijtema, 1965). From the pilot study, described in chapter 2, it was concluded that

transpiration of forests was strongly determined by stomatal conductance. Stomatal

conductance often is sensitive to an increase in the atmospheric CO  concentration2

(Morison, 1987), and a change in water use of a forest will strongly depend on the

sensitivity of the stomatal conductance to increasing atmospheric CO . Therefore, it was2

important to select a model, which simulates the stomatal conductance and which also

includes its sensitivity to elevated CO . In chapter 3, the responses of trees to elevated CO2 2

concentration were summarized and several possible models for determination of the

stomatal conductance were given. A process-based model of the stomatal conductance is

not yet available (Kearns and Assmann, 1993) and until now the models are empirical. As

concluded in chapter 3, the assimilation-stomatal conductance (A-g ) based models ares

preferable, as they give a good description of the stomatal functioning, including its

sensitivity to CO .2

The primary process of the CO -assimilation (A) at leaf and cellular scale are2

reasonably well understood for C -plants (Reynolds et al., 1993), although the knowledge3

of the processes is largely phenomenological. Nowadays assimilation models can be used

to evaluate the possible effects of increasing atmospheric CO  and climate change.2

However, the models only give an understanding of the short-term process. The long-term

process, which lasts several decades for forests, is complex: the secondary effects of the

CO  change on growth, photosynthetic capacity, nutrient cycle, acclimatization, species2

competition and forest tree composition are difficult to analyse. So, the model only

simulates primary effects of CO  on the water balance.2
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Soil water content is calculated by a simple bucket type model. The model may

suffice for forests on sandy soils with a deep water table.

Several one-dimensional models are available for simulation of rainfall interception

(Rutter, 1971; Gash, 1979; Mulder, 1985; Calder, 1986). Direct measurements of water

storage of the canopy by Bouten et al. (1991) suggest, that bucket type models of

interception underestimate water storage and this is usually compensated by an

overestimation of evaporation during rain (Klaassen et al., 1996b). Application of a

lowered evaporation rate in the model resulted in an improved simulation of the

interception for two forest sites (Lankreijer et al., 1993). Based on those findings, Klaassen

et al. (1996b) described a new concept of interception simulation, using an exponential

and higher saturation of the canopy and a lower evaporation rate.

In this study interception is still simulated by the common bucket-like model as the

recent developments, described by Klaassen et al. (1996b), are still insufficient for specific

simulations and they need further validation.

Abbreviations and units are explained in the text as well as in the list at the beginning of

the thesis.

4.2 Simulation of the forest water balance

The water balance of a forest can be described by:

(4.1)

with P = precipitation, E  = evapotranspiration from soil and vegetation, I = interception ofT

rainfall, U = drainage of water from the system and )1 = the change in soil water storage.

An overview of the water system of a forest is given in figure 2.1. Precipitation, often

referred to as gross precipitation, may fall on the canopy or directly onto the soil. The last

part is called free throughfall. The intercepted water may drip from the leaves (canopy

drip) or flow along stems to the soil (stem flow). A large part of the intercepted water

remains on the canopy and evaporates directly into the atmosphere. This part is referred to

as interception.

Interception of precipitation by the forest canopy can be very large. In deciduous

forests values of 20 to 30 % interception of the total precipitation during the leaf period

were found and 10-20 % during the leafless period. For coniferous forests the average

value for interception was between 30 and 40 % of the total precipitation (Roestel, 1984).
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In tropical forests these values ranged from 9 to 23 % (Raiche, 1983). Interception of rain

(I) is especially important for tall vegetation as forests (Rutter, 1967; Stewart, 1978),

because of the strong coupling between canopy and the atmosphere. The fast evaporation

of the stored water in the canopy after a storm is important (Klaassen et al., 1996b). The

difference in interception between forests and low vegetation like agricultural crops causes

the main difference in the water use of these ecosystems. The reason for this difference in

interception is, that the forests canopy dries more quickly and the transpiration starts

sooner after the end of the storm.

Net precipitation, that is water reaching the soil, is the sum of free throughfall,

canopy drip and stem flow. In most forests, stem flow is only 0-5 % of the precipitation,

and therefore it is often neglected. In trees with a smooth bark, however, it can reach up to

20 % of the precipitation during leafless periods (Hiege, 1985). At the forest floor, the

water can be stored in layers of dead leaves and humus, or evaporate before infiltrating the

soil. According to Schaap & Bouten (1995) and Kelliher et al. (1995), the amount of

evaporated water from the forest floor can be 3 to 21 %, if the tree canopy density is low.

Overland flow of water is possible, but many forest soils are covered with leaves or humus,

and for this reason overland flow of water is often negligible in regions with a flat

topography.

Precipitation, which reaches the upper layer of the soil, is available for the vegetation.

In areas with a high water table, water can also be supplied by capillary rise from ground

water. Water, taken up by the roots of plants, is transpired by leaves into the atmosphere. A

small and negligible part of the absorbed water is used for growth. Water in the

unsaturated soil zone percolates to the ground water and drains from the forest soil or is

taken up by the vegetation for transpiration.

4.3 Simulation of soil water content

In the present study, the forest soil is represented by a single layer, a bucket type of model.

The single layer represents the rooting depth of the vegetation. As long as the soil water

content (2) is below field capacity (2 ), the drainage is considered as nihil. When the soilFC

water content rises above field capacity, the surplus water is considered as drainage, and

the actual soil water content is set to field capacity. This procedure presents a

simplification of the reality, but the procedure is considered satisfactory for sandy soils

with a deep water table (Dolman, 1988; Hendriks et al., 1990). For other soil types, it is

recommended to calculate drainage on the basis of soil characteristics, and to take into
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account the effect of capillary rise as well. 

Soil water content was calculated on a daily basis from the soil water content of the

previous day (2 ), total precipitation (P), drainage from the system (U), interception (I)T-1

and transpiration (E ), using equation 4.1. Values for the field capacity and the maximumt

soil water deficit were taken from in situ measurements for a sandy soil by Hendriks et

al.(1990). The total amount of available water to the forest trees was taken as equal to the

difference between field capacity and wilting point of the soil, the wilting point being set to

the maximum soil water deficit.

4.4 Rainfall interception model

Interception of precipitation was calculated, using a model derived from the model of Gash

(1979). This model was chosen, because it yields accurate estimates and it only needs a

few measured parameters to describe interception. Lankreijer et al. (1993) successfully

applied the model to deciduous and coniferous forests.

The interception process is divided into three phases. The first phase, the wetting up

phase (w), ranges from the start of the storm up to saturation of the canopy. During the

second phase, the saturation phase (s), the canopy surface is assumed to be completely wet.

The last phase is the drying phase after the rainfall event (d). It is assumed that canopy drip

and stem flow are zero, when the amount of water in the canopy is below storage capacity,

according to the applied concept of ‘bucket’ type.

The total amount of intercepted water, evaporated from the canopy (I), is the

summation of the intercepted water, evaporated during the above mentioned three phases:

(4.2)

When the precipitation (P) is too small to saturate the canopy, the total interception is

equal to the amount of rainfall minus the throughfall, given by:

(4.3)

The variable p is the free throughfall coefficient, which is related to the proportional ratio

of open space area and total canopy area.

When the amount of rainfall is sufficient to saturate the canopy, and the average

evaporation rate (�) during the storm is zero, total interception (I) is equal to the saturation

capacity (S). On the other hand, when � during the storm is above zero and larger than (1-p)

R̄ , - where R̄ is the average rainfall intensity -, then the canopy will never reach saturation
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and total interception I equals the amount of rainfall on the canopy, given by equation 4.3.

The amount of rainfall, necessary to saturate the canopy (P*) is given by (Gash,

1979):

(4.4)

where S is the storage capacity of the canopy. S is generally assumed to be constant, and it

is related to the leaf area index and structure of leaves and stems (Herwitz, 1985).

The canopy parameters, S and p, are derived from the daily totals of precipitation and

interception through the Leyton analysis (Leyton et al., 1967). The values are taken as

constant for periods with no change in the leaf area.

Storms, with an amount of rainfall larger than P', yield a total evaporation of

intercepted water, which depends on the evaporation rate and rainfall intensity during all

three phases of the storm. Interception during these phases is given by:

(4.5)

(4.6)

(4.7)

The rainfall interception was calculated on a daily basis. Daily precipitation rate was

averaged from hourly measured values and daily evaporation rate from hourly calculated

values. The evaporation rate was calculated from the slightly modified Penman-Monteith

(PM) equation:

(4.8)

Note that, compared with the original PM equation, r  replaced r , the aerodynamica,H a,M

resistance for momentum and r  is set to zero.s

The aerodynamic resistance for heat (r ) is calculated by:a,H

(4.9)

where k is von Kármán constant (=0.4). In equation 4.9 the corrections for stability have
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been neglected, as their influence generally is small for forests under wet conditions. The

aerodynamic resistance is calculated, assuming a similarity in the resistance for latent and

sensible heat respectively.

For closed canopies, the roughness length for momentum (z ) can easily be0,M

estimated from the canopy height h . Shuttleworth (1989) gives the average of 15 studiedc

coniferous forests: z  h  = 0.076 (based on values presented by Jarvis et al., 1976). Gash0,M c
-1

(1979) used z  h  = 0.1 to estimate z . Dolman (1986) also found a value of z  h  =0,M c 0,M 0,M c
-1 -1

0.1 for a deciduous forest. A higher accuracy of z  can be obtained from in situ wind0,M

profile measurements.

Determination of the roughness length for heat (z ) is much more difficult. An0,H

overview of the relation between z  and z  is given by Mölder (1993). Estimation of z0,H 0,M 0,H

from the radiation surface temperature suggests, that z  is three orders of magnitude0,H

smaller than z  in heterogeneous terrain (Beljaars and Holtslag, 1991). Brutsaert (1982)0,M

summarizes several relations, which suggest that z  varies between 4 orders to only one0,H

order of magnitude smaller than z , depending on the surface type. Kustas et al. (1989)0,M  

found from radiation measurements a range in ln(z / z ) from 1 to 10, confirming that0,M 0,H

the range was larger in cases of heterogeneous surfaces. A z  value is found for forests,0,H

which in general is only one magnitude below z .0,M

It is questionable, whether this value of z  can be used to describe the evaporation of0,H

a wet forest canopy. Lindroth (1993) directly analysed the roughness length for latent heat

(z ) from flux measurements above a wet canopy of a willow short-rotation stand and he0,V

found that z .0.1h  has the same magnitude as z . 0,V c 0,M

Given the uncertainty in the relation z  / z  in this study, a simple relation is used,0,H 0,M

as proposed by Garratt and Francey (1978), which relation also is in agreement with the

value, found by Brutsaert (1982) for pine forest:

(4.10)

or

(4.11)

The zero plane displacement for heat might also deviate from the value for momentum, for

instance when water evaporates from levels in the forest, which differ from the levels of

mean momentum absorption. Following Raupach and Thom (1981), the value of d is taken

identical for heat and for momentum exchange.
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4.5 Simulation of transpiration

The most difficult water flux to simulate in a forest system probably is the transpiration of

water from the leaves: the flux depends on both atmospheric and plant specific

characteristics. The rate of transpiration is determined by the evaporative demand of the

air, the available net radiation, the opening of the stomata in the leaves, by the availability

of water to the plant and by the storage of water in the plant.

Transpiration was calculated on an hourly basis with the PM-equation:

(4.12)

where G  is the aerodynamic conductance for heat and G  is the surface conductance.a,H s

Note, that conductance is equal to the reciprocal value of resistance (g = 1/r).

The specific humidity deficit, D, is calculated from measured actual air humidity and

the saturated vapour pressure.

Available energy Q  is calculated from net radiation, Q  and soil heat flux, H :AC N s

(4.13)

where H  might be taken from measured data or it may be estimated from Q . H  rangess N s

from 2 % of net radiation under a dense canopy to more than 30 % under sparse canopy

(Monteith et al., 1990). Baldocchi et al. (1984) assumed that the soil heat flux was equal to

the net flux radiation, available at the forest floor, since latent and sensible fluxes are small

near the floor. Based on this relationship, the soil heat flux (H ) was computed as 3.6 % ofs

the net radiation above canopy, as found by Baldocchi et al. (1984).

The aerodynamic conductance, G , was calculated, using equations 4.9 and 4.10.a,H

G  in general was much larger than G , and the correction for the difference between thea,H s

aerodynamic conductance for momentum and for heat is only of minor importance in the

simulation of the transpiration.

Transpiration will be suppressed when the canopy is wetted by rain. Some transpiration

takes place during the first part of the storm, when the canopy is not yet saturated.

Therefore, the amount of transpiration during the wet leaf period was larger in a period

with many small storms than in a long period of rainfall. Based on sapflow measurements,

Klaassen et al. (1996b) estimated transpiration as 10 % of total evaporation during rain.
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(4.14)

(4.15)

In this study transpiration during the wet leaf period was neglected in a following

indirect way. After calculation of transpiration for all 24 hours, the daily transpiration was

corrected for wet leaf periods by subtraction of part of the interception from the total

transpiration, following Gash and Stewart (1977) and Gash (1978):

where c is the quotient of transpiration and potential evaporation. The simulated values for

transpiration and potential evaporation were averaged over the rainfall hours.

4.5.1 The stomata - photosynthesis model

The surface conductance (G ) in the PM-equation is assumed to be fully determined by thes

stomatal conductance (g ) of the leaves in the canopy. CO  is taken up in the leaf throughs 2

the stomata to be used in assimilation. Water vapour is lost through the stomata at the

same time. The stomatal conductance for water vapour (g ) is therefore directly related tosw

the stomatal conductance for CO  (g ), given by:2 sc

The factor 1.6 is the approximate ratio of the molecular diffusion coefficients for water

vapour and CO  in the air respectively.2

The stomatal conductance is simulated by the A-g  based model of Leuning (1995),s

which incorporates the sensitivity of the stomatal conductance to changes in ambient CO2

and to plant physiological characteristics. Leuning (1990) adapted the stomatal

conductance model of Ball, Berry and Woodrow (1987), using the humidity function by

Lohammar (1980).

Stomatal conductance for CO  (g , in mol m s ) depends on the assimilation rate A2 sc
-2 -1

(mol m s ), the air humidity deficit D (in this equation given in mol m ) and the CO-2 -1 -3
2

concentration at the leaf surface C  (mol m ). In this version of the model, thes
-3

concentration of CO  at the leaf surface, C , is set to the ambient concentration. Stomatal2 s

conductance is given by Leuning (1995):

(4.16)
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The assimilation rate A can be derived from (i) the supply of CO  through diffusion from2

the leaf surface to the interior cells and (ii) the demand of CO  by the biochemical CO2 2

fixation in the leaf cells. When the stomata close, the assimilation process stops, because

CO  is no longer available. On the other hand, when assimilation stops because of leaf2

internal processes, the stomata may close to prevent loss of water.

The relation between A and g  depends on the CO  supply through the stomata and itsc 2

can be described by:

(4.17)

The assimilation rate A was simulated (at the single leaf scale) according to Farquhar et al.

(1980), following Friend (1991, 1995) and Jones (1992).

The assimilation rate is a function of absorbed photosynthetically active radiation

(PAR), leaf temperature (T ), intercellular CO  concentration (C ) and intercellular OL 2 i 2

concentration (O ). The net assimilation rate is assumed to be the minimum of thei

assimilation rate limited by Rubisco activity (A ) and the regeneration of RuBP (A ),c r

expressed by:

(4.18)

The regeneration of RuBP is limited by the electron transport. The electron transport J (in

mol m s ) depends on the light absorption by chlorophyll. A  (in mol m s ) is given by:-2 -1 -2 -1
r

(4.19)

The assimilation rate as limited by Rubisco, A  (mol m s ), depends on Rubisco activity,c
-2 -1

C  and O  (mol m ):i i
-3

(4.20)

where '  = CO  compensation concentration in absence of mitochondrial respiration (mol* 2

m ), J = potential electron transport rate (mol m s ), K  = Michaelis-Menten constant of-3 -2 -1
c

ribulose bis-phosphate carboxylase (Rubisco) for carboxylation (mol m ), K  = Michaelis--3
o

Menten constant of Rubisco for oxygenation (mol m ), V  = maximum catalytic capacity-3
c,max

of Rubisco (mol m s ) and R  = respiration rate (mol m s ).-2 -1 -2 -1
d

Given the similarities between 4.19 and 4.20, the net assimilation can be written as:
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(4.21)

where " is V  or J, and $ is K (1+O /K ) or 2'  Simultaneous solution of the threec,max c i o *

equations 4.16, 4.17 and 4.21 results in a quadratic equation for C  :i

(4.22)

where

(4.23)

(4.24)

(4.25)

(4.26)

and

(4.27)

Equation 4.22 gives two solutions for C . The C , resulting in the lowest A, was chosen andi i

g  was calculated. C  is an estimation of the CO , available to the cell within the leaf.sc i 2

Farquhar and von Caemmerer (1982) assume that differences between C  and the fractioni

of CO  at the site of carboxylation are small. During high rates of photosynthesis, however,2

a significant gradient in the CO  concentration from the intracellular spaces to the2

carboxylation site in the cells can be expected. This effect is neglected because of

simplicity reasons.

The assimilation rate is temperature dependent. The calculation of the assimilation rate

was started at the assumption of a leaf temperature (T ) to be 5E above air temperatureL

(T ). The leaf temperature was recalculated with the function, adapted from Jones (1992,A

equation 9.5), using the simulated value of g :sc
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(4.28)

where T = air temperature, r = stomatal resistance (=1/g ), r = aerodynamic resistance forA s s a,H

heat.

The temperature dependent parameters were calculated resulting in new values for

the assimilation rate and stomatal conductance. The calculation was iterated, until the leaf

temperature was constant within 0.001 K. The calculation was also stopped, when TL

reached values below 0 EC, since it is assumed that the assimilation was nihil, when leaf

temperature becomes below 0 EC. 

Transpiration of water from the leaf was determined by calculation of the stomatal

resistance (or its reciprocal stomatal conductance). The resistances to vapour transport of

the leaf mesophyll (internal) and of the leaf boundary layer were small and could be

neglected, compared with the resistance of the stomata. The stomatal conductance

depended on leaf temperature, which again depended on the heat resistance of the leaf

boundary layer. The resistance of the leaf boundary layer is determined by several factors,

as e.g. the leaf width. With increasing resistance, the leaf temperature changed and it

influenced the assimilation and transpiration rates.

In equation 4.28 the leaf temperature was calculated from the aerodynamic resistance

for heat, r . The aerodynamic resistance, r , was calculated with equation 4.9. The leafa,H a,H

temperature was assumed to be constant through the canopy and the effect of the leaf

boundary layer resistance on the latent heat flux was approximated by using r  instead ofa,H

r .a,M

4.5.2 Calculation of the canopy conductance

In the present calculation the canopy is regarded as a single 'big leaf', meaning that

environmental variables, as air temperature, atmospheric CO -concentration, wind speed,2

air humidity and leaf temperature are assumed to be constant throughout the entire canopy.

The only exception to this single ‘big leaf assumption’ is the variable solar radiation. This

variable is a major and decisive factor, governing photosynthesis and stomatal conductance

(Goudriaan, 1986). The available solar radiation decreases with canopy depth and it

strongly depends on leaf density. The relation between the assimilation rate and solar

radiation is not linear, and therefore, the available solar radiation is calculated for different
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(4.31)

canopy layers, depending on the LAI of the canopy, following the Beer-Bouguer law. The

canopy is divided into n layers, with each layer (i) having its own LAI. Default value for n

is 5.

Solar radiation, available in each layer, Q  (W m ), is calculated from leaf area andci
-2

extinction coefficient (k), by:

(4.29)

The density of the leaves, the canopy structure, the leaf angle distribution, but also azimuth

of the sun, determine together the value of k. The value of k was found to vary between 0.2

and 1.5 (Baldocchi et al., 1984; Jones, 1992). In this study the value was set constant at

0.75 and it is assumed to be independent of solar elevation. The value of k implicates a

canopy with a clumped-leaf distribution. The relation between solar radiation and LAI for

different canopy layers is given in figure 4.1.

PAR is derived from solar radiation. About 45% of the total solar radiation is PAR

(Monteith et al., 1990). Total PAR (in molquanta m  s ) is given by:-2 -1

(4.30)

PAR, absorbed by the leaf, is calculated from:

where "  is the absorption coefficient of the leaf, which slightly depends on thickness ofPAR

the leaf, age, water content, surface morphology and orientation. The value is set at 0.85 in

the model, according to Jones (1992).

LAI distribution influences canopy radiation and thus total assimilation and

transpiration. The date of leaf unfolding can be simulated, using periods of chilling and

forcing temperatures (Kramer, 1994). To calculate the day of leaf fall is more difficult,

since it is determined by several factors, like water availability during the season. Given

the uncertainties of the simulation of the LAI distribution over time, functions based on

LAI-measurements are used in the model for deciduous and coniferous types of forests



LAI
0 2 4 6 8 10 12

0

20

40

60

80

100

1

2

3

5
4

55

Figure 4.1 Relation between the percentage of radiation in the center of each canopy
layer relative to the total radiation at the top of the canopy and the total canopy
LAI. The number of canopy layers is set to 5.

(Beadle et al., 1982; Hendriks et al, 1990).

 In summary, for each canopy layer the available solar radiation was determined.

From the last value the PAR for each layer was calculated and the assimilation rate A of the

concerned canopy layer (mol m s ). Total A for the entire canopy was then determined by-2 -1

multiplication of the average A of the n layers by the total LAI. The found value of A is

used in equation 4.16 and resulted in the surface conductance for the whole canopy.

Soil water deficit function

In this study, the simulation of the water balance is given for periods, when soil water may

be temporarily limiting. Therefore, a relation between stomatal conductance and soil water

availability is needed, since both stomatal opening and photosynthesis are reduced by soil
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water limitation. These processes are regulated by the production of the phytohormone

ABA in the roots under water limitation (Kearns and Assmann, 1993). 

To account for the effect of water deficit in the soil, it is assumed that the stomatal

conductance, as simulated with the Leuning-model (equation 4.16), presents the optimal

conductance without any leaf water and soil water limitation.

To incorporate the influence of soil water content on canopy conductance, the

relation, described by Stewart (1988), is used:

(4.32)

where f(2) is the soil moisture factor, varying between 0 and 1, 2  is the actual soilD

moisture deficit, 2  is maximum soil moisture deficit and a  is a fitted constant. Leuningmax 2

(1995) concluded, that the A versus g  model needs to be corrected for water-stressedsc

plants. An independent multiplicative factor to describe the relation between ABA

production and stomatal conductance is not realistic (Dewar, 1995), because the sensitivity

of the stomata to atmospheric CO  concentration can increase with increasing soil moisture2

deficit, but is applied as a first approach.

Finally, the surface conductance (G ) is calculated by multiplication of the canopys

conductance for CO  (G ) with the factor 1.6 (see equation 4.15) and the soil water2 sc

reducing factor:

(4.33)

In the calculation of the stomatal conductance for CO , the interaction between the2

diffusing molecules of CO  and water vapour with each other and with the cell walls is2

neglected. Leuning (1983), following Jarman (1974), gave an extensive overview of the

influence of CO  and H O pressure differences between leaf and air and the collision of the2 2

CO  and H O molecules with the cell walls. Both the effects of pressure gradients of CO2 2 2

and H O between leaf interior and outside on the diffusion of CO  and water vapour and of2 2

CO  diffusion on the diffusion of H O, are very small and should be neglected. However,2 2

according to Jacobs (1994), the effect of diffusion of water molecules, to the outside, on

the diffusion of CO  molecules, to the leaf interior, can not be neglected, considering the2

transport of gases through the stomata. The effect depends on the rate of transpiration and

the assimilation rate and it is large, when the assimilation rate is small. On the other hand,

Leuning (1990) stated, that under most conditions the introduced error is <2% in the

estimation of A and C . In this study both effects are neglected for reasons of simplicity.i



Rd 'Rdt N

'
(
'

0.5Vo,maxKcOi

Vc,maxKo

Vc,max'kcRc

57

(4.35)

4.5.3 Derivation of CO  assimilation parameters2

The simulation of the assimilation rate, given in equations 4.19 and 4.20, uses several

parameters. Most parameters were calculated, according to Farquhar et al. (1980) and

Friend (1993) and they are given below. Constants and site dependent variables are given

in appendix A.

Photorespiratory compensation point

The compensation point in absence of mitochondrial respiration, ' , depends on the rates*

of oxygenation and carboxylation of Rubisco (von Caemmerer and Farquhar, 1981):

(4.34)

Respiration rate Rd

The mitochondrial respiration rate, R , was simulated as a function of the nitrogen contentd

of the leaf (Friend, 1995):

R  is the rate of dark respiration (mitochondrial respiration) in mol (CO ) kg (N) s ; it isdt 2
-1 -1

temperature dependent.

Rubisco-parameters

The maximum rate of carboxylation of Rubisco (V ) has been derived from gasc,max

exchange measurements, and it was empirically calculated from the nitrogen content of the

leaf (Farquhar et al., 1980; Friend, 1993). It is a function of the carboxylation turnover

number, k , of Rubisco:c

(4.36)

where R  is the leaf Rubisco catalytic site content, k  is a given input value and it isc c

temperature dependent.

Similarly, the maximum rate of oxygenation of Rubisco, V , is calculated from Ro,max c
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and the oxygenation turnover number k . R  is calculated from the Rubisco concentration,o c

where complete activation of Rubisco is assumed. The molar mass of the enzyme Rubisco

is 550 kg mol  with 8 active sites, resulting in:-1

(4.37)

where F is the Rubisco content of the leaf (g m ). Rubisco content is on its turn, derived-2

from nitrogen content of the leaf, assuming 0.16 kg N kg  Rubisco (Farquhar et al., 1980):-1

F= f N/0.16N,Rub

f  is the fraction of leaf nitrogen, bound in Rubisco, and N is the total leaf nitrogenN,Rub

content in kg m . The fraction of leaf nitrogen, bound in Rubisco, is assumed to be 22%-2

(Friend, 1991). The N-content per unit one-sided leaf area, appears to be fairly constant for

a broad range of leaf types, with an average of 1.57 g N m ; it ranges between 1 and 4 g m-2 -

. The N content of conifers is above the average of 1.57, namely 3.02 g m  (Schulze et al.,2 -2

1994). In this study the total leaf nitrogen content is set default to 2 g m .-2

Physiological research has shown, that leaf photosynthesis is related to leaf nitrogen

concentration. The dependency of the actual assimilation rate on the nitrogen content of

the leaf is incorporated, according to Friend (1991). The relation between A and N is

determined by the total leaf concentration of N, the partitioning of N in Rubisco and

chlorophyll, and by the dark respiration rate. The relation between A and N results in an

almost linear increase in the assimilation rate with N (figure 4.2), and it slightly decreases

with higher nitrogen concentrations, also resulting in a linear relation between the stomatal

conductance and nitrogen content. Schulze et al. (1994) also derived a linear relation

between maximum assimilation rate and leaf nitrogen concentration.

Light dependent and electron transport related parameters

The electron transport, J, depends on the absorbed PAR and on the potential rate of

electron transport during light saturation, J  (mol m s ); for details see Farquhar and vonmax
-2 -1
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Figure 4.2. Assimilation rate (A), canopy conductance (G ) and respiration rate (R ) vs. c d

nitrogen content of the leaf.

(4.38)

Caemmerer (1982):

The value of 2.1 is the amount of mol quanta absorbed, to deliver the necessary energy.

This value depends on the way the additional ATP for the NADPH production is

generated.

J  depends on the leaf chlorophyll content. The chlorophyll content is againmax

calculated from the nitrogen content of the leaf, so J  is given by:max

(4.39)

where j  is the temperature dependent, irradiance-saturated potential electron transportmax
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per mole of chlorophyll, and f  the fraction of nitrogen, bound in chlorophyll. The valueN,chl

of 0.056 is calculated as the result of the molar mass of nitrogen (0.014 kg mol ) and the-1

number of moles N per mole of chlorophyll.

Temperature dependency of assimilation parameters

K  and K  are the Michaelis constants of Rubisco for CO  and O  respectively. K  isc o 2 2 c

temperature dependent in contrast to K  (Jordan and Ogren, 1984).o

k , k , R  and j  also are temperature dependent. The temperature dependency of the firsto c dt max

three parameters and that of K  is calculated from (Thornley & Johnson, 1990):c

(4.40)

where p is K , k , k  or R  respectively, a is a parameter-specific constant, E  is thec o c dt a

activation energy and R is the gas constant. The relation between p and T  is given in figureL

4.3A.

The temperature dependency of j  is given by:max

(4.41)

Equation 4.41 shows a maximum of J  around 30EC (see figure 4.3B).max
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Figure 4.3. Temperature dependency of K , k , k  and R  (A) and of J  (B). The values ofc o c dt max

the parameters shown in figure A are relative to the value of the parameters
at 20°C.

The values of K  and K  are corrected for the influence of solubility of CO  and Oc o 2 2

respectively, according to Friend (1995).

4.6 Discussion

A physiological A-G  type model was included in the forest water balance model to includes

the direct effect of atmospheric CO  on stomatal conductance. The  A-G  model still uses a2 s

certain degree of empiricism, but the physiological processes, determining stomatal

functioning, are realistically simulated. Advantages of the physiological description are (i)

a smaller sensitivity on fitted (and thus 'black box') parameters and (ii) the possibility of

extending the model to studies on simulation of growth, and of physiological and

ecosystem processes. The model shows a realistic response of the stomata to

environmental changes, especially to the air humidity (Dewar, 1995).

An indirect response of g to D follows from the (almost) linear empirical relation

between g and E , as observed by Monteith (1995a), who re-analysed 52 sets of publishedt

measurements on humidity responses of the stomata of 16 species. Monteith showed, that

the relationship in terms of the maximum stomatal conductance g  (when D60) andmax

maximum transpiration rate E  (when D was large) was constant. Dewar (1995) showedmax

the consistency of the model by Leuning, by explaining both g  and E , taking intomax max

account the osmotic gradient between the leaf cells and the hydraulic conductivity of the
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cells. These characteristics can be related to the value of the empirical constants a  and D1 s,0

in the model of Leuning.

The results of the model also are, according to Dewar, in agreement with the stomatal

response to the internal CO  concentration (Mott, 1988) and the sensing of the2

transpiration rate, E, by the stomata (Mott and Parkhurst, 1991).

Based on several assumptions the model might be improved. The sensitivity of the model

to the N-content of the leaf makes the N concentration in the leaf probably a most crucial

parameter in the simulation model. A small change in the N-content does strongly change

A and g . Incorporation of a realistic simulation of the N-content in the leaf and itss

implication to assimilation and stomatal conductance is urgently needed.

Soil moisture deficit has no effect on the surface conductance until it reaches a certain

value, see e.g. equation 3.11 (Hendriks et al., 1990). Based on this conclusion, the relation

of Stewart (1988) is used as a first approach to describe the relation between the stomatal

conductance and soil water content in this model version. Monteith (1995a) found that the

maximum stomatal conductance, g , shows no response to decreasing soil waterm

availability, except down to very low values of 8% of the available soil water. Dewar

(1995) linked this response of the plants to the ABA production in the roots under low

water availability and by subsequent transport of ABA to the leaves and the consequent

response of the stomata. The relationship of g  to soil water content is similar to themax

relation, used by Stewart (1988), between G  and soil water deficit and it supports thes,max

use of the equation to describe the response of stomata to soil water deficit. As a first

approach it is acceptable, although both the change in the sensitivity of the stomata to the

CO  concentration, found when ABA is produced, and the sensitivity of E  to leaf water2 max

potential, are not taken into account. The model might be improved using the mechanistic

description (Dewar, 1995) of the response of stomatal conductance to soil water

availability, leaf water and osmotic potential status.

Species differ in their sensitivity of the stomata to ambient CO  concentration. For2

example, many coniferous trees show little or no reaction to high atmospheric CO2

concentration. This sensitivity difference is likely to be related to a  or D , and leaf1 S,0

hydraulic conductivity, but also to genetic characteristics, expressed in anatomical

adjustments (stomata density, pore size and leaf thickening) during leaf development

(Kürschner, 1996). The topic of stomata sensitivity to atmospheric CO , together with the2

response to soil water, needs further research.

The assumption of a similar roughness length for latent and sensible heat in the simulation
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of the interception, is questionable. Direct measurements of z  for a wet canopy are rarely0,V

performed. Lindroth's (1993) measurements showed a similar roughness length for

momentum and latent heat. However, a lower value for z  is possible, because Lindroth's0,V

selection of 'wet canopy-conditions' was more strictly applied than needed in simulation of

interception (Lindroth, 1995 pers. comm.) and probably the canopy is seldom completely

wet.

In the study by Lankreijer et al. (1993), the average evaporation rate (�) for the Les

Landes location was even smaller by mistake, due to an error in the use of equation 4.9. In

the published study, the simulation results showed even better agreement with the

measurements when the aerodynamic resistance was larger, than described by the

equations. This implicates that - assuming no errors occurred in the measurements - z0,V

might be even smaller than z . The measurements by Lindroth suggest a z  close to z .0,H 0,V 0,M

It is unclear, which value z  is realistic. The derivation of a correct z  strongly depends0,V 0,V

on correct measurements of humidity deficit, which is difficult under wet circumstances,

when humidity is often close to saturation. Therefore, measurement of humidity during and

shortly after rainfall, needs more attention.

The interception of precipitation influences transpiration via the water availability in the

soil compartment. Changes in interception through changes in canopy (e.g. LAI) will alter

the soil water availability and transpiration, if soil water content is low. Lower interception

and increase in throughfall will change the interception of the topsoil and soil evaporation.

The change in leaf litter interception, soil evaporation and the relation between the

descriptive parameters of the canopy S and p and the LAI and canopy are unclear and they

need further research. To determine the canopy parameters from an exponential saturation

of the canopy seems a right step in this direction (Klaassen et al., 1996b), instead of the

often used Leyton analysis.

Forest floor evaporation is explicitly not simulated by the model. Implicitly the floor

evaporation is incorporated into the model by the fact that the transpiration model is fitted

to total evaporation measurements, without distinction of leaf transpiration and soil

evaporation. Although forests with a LAI larger than 4 will show a low value of floor

evaporation, the model will give an underestimation for periods with low LAI during

spring and fall. It is assumed that by incorporation of the soil evaporation into the

transpiration model, the underestimation is small over long periods, compared to the total

water balance.
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The simulation of the water balance with a one-dimensional model is appropriate for large

scale forests (Veen and Dolman, 1989). However, with small scale forests, the effect of

advection of energy might be important. Only 25% of the Dutch forests is larger than 5

hectare, and 70% is smaller then 1.5 hectare (Braks, 1984). The water use of a forest edge

is on an average larger than in the middle of a extensive forest. Harding et al. (1992) state,

that the recharge of soil water of a one hectare forest area is only 68% of the value of a

hectare forest without an edge effect. The difference is attributed to a higher transpiration,

a higher leaf area index (LAI) and a higher radiation at the edge. Another explanation for

the enhanced water use of forest edges is the increased evaporation rate, due to stronger

turbulence (Klaassen et al., 1996a). They also found, that the total amount of interception

is not larger at the edge, but that the canopy dries more quickly after a storm, and thus,

transpiration after the storm starts sooner. Both effects of increased LAI and increased

evaporation rate increase the water use at forest edges. Forest edges are therefore important

in the water balance of Dutch forests (Kruijt, 1994). Considering the regional water

balance, no indication has yet been found, that the edge effect might be significantly

enhanced or reduced by climate change.
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4.7 Conclusion

To simulate the effect of increasing atmospheric CO  on the hydrology of forests, the2

dependency of the surface conductance on assimilation rate and on CO  is incorporated2

into the model, using the model of Leuning (1995). Confirmed by the results of Dewar

(1995), the model realistically simulates the stomatal responses to environmental changes.

In an independent simulation study the interception model already showed good results

(Lankreijer et al., 1993), but estimation of the value for z  needs further research. The0,V

possible effects of a change in the canopy might be estimated more realistically by

simulation of the canopy characteristics S and p in relation to the LAI and canopy

structure.

This first version of the model uses several simplifications. However, the A-g  sub-models

makes it possible to analyse the effects of changes in physiological processes on the water

balance of trees.


